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Abstract—Power conserving property of the propagating
transverse-magnetic wave in a strongly guiding waveguide is
demonstrated using the beam-propagation method with a trans-
formed field. A step-index profile is expressed by a sigmoid
function. A tilted, asymmetrical waveguide and a Y-branching
waveguide with high index contrast are analyzed and discussed.

Index Terms—Beam-propagation method (BPM), high index
contrast, optical waveguides.

I. INTRODUCTION

OR THE analysis of a z-varying dielectric waveguide by

the beam-propagation method (BPM), one is often con-
fronted with the problem that the power is not conserved during
the propagation process, particularly when simulating the trans-
verse-magnetic (TM) waves. This is due to the fact that a simple
Fresnel equation, similar to that in the transverse-electric (TE)
waves, is used even for the TM analysis. Vassallo [1] clearly in-
dicated the necessity of including the variation of the refractive
index along the propagation direction. Hoekstra [2] introduced
the transformation of the H-field to H /n, where n is the refrac-
tive index. Subsequently, Poladian and Ladouceur [3] extended
Hoekstra’s idea to a more general case, and succeeded in ana-
lyzing TM waves in a tilted, graded-index waveguide. It should
be noted, however, that the transformation technique does not
work well for a step-index waveguide. The authors, therefore,
numerically investigated the effects of including the variation of
the refractive index in detail [4]. On the other hand, Ho and Lu
[5] introduced a single scatter approximation for the wide-angle
TM wave. A power-conserving fourth-order accurate BPM was
also developed using a Padé operator [6].

We should note that a step-like change of the refractive index
can be approximated by a sigmoid function, which allows us to
express a step-index profile as a special case of a graded-index
profile [7]. Since the sigmoid function is smooth and differ-
entiable, we are encouraged to apply the transformation tech-
nique to the analysis of a waveguide with a step-index profile
approximated by the sigmoid function. Calculation in this letter
shows that the power is well conserved during the propagation
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process even for the simulation of a tilted, asymmetrical wave-
guide with high index contrast. As an application, a strongly
guiding Y-branching waveguide is analyzed and discussed.

II. FORMULATION

Using the slowly varying envelope approximation (SVEA),
a propagation equation in a two-dimensional waveguide for the
TM wave is expressed as follows:
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where H,, = H(x,z) exp(—jkonoz), in which ny is the refer-
ence index and kg is the free-space wavenumber. The power is
evaluated by [ |H|?/n?dz.

On the other hand, using the transformation of H, =
n(z,z)Fy(x,z) together with the SVEA, Poladian and
Ladouceur [3] derived
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The last term, nd?n =1 /922, can be omitted within the frame-
work of the Fresnel approximation. It should be noted that (2)
is equivalent to a TE propagation counterpart except for a dif-
ferent refractive index profile. The power is simply expressed as
J|Fda.

The derivative of n~' will be singular if n is not smooth, as
in a step-index waveguide. To resolve this difficulty, we express
a step-index profile by a smoothly varying function, i.e., the
following sigmoid function is adopted:
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where a is the parameter that determines the steepness of the
index change. n., and n.; are the refractive indexes of the core
and the cladding, respectively, and d is half the waveguide
width.

By increasing the parameter a, we can make a more step-like
profile. When the parameter a is taken to be infinity, the refrac-
tive index profile becomes a complete step-index profile. Exam-
ples of some sigmoid functions with various values of a are de-
picted in Fig. 1, in which n., and n.| are chosen to be 3.512
and 3.17, respectively. We typically choose a = 500 in the
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Fig. 1. Examples of sigmoid functions.

following analysis.As a result, the refractive index becomes a
smooth function and differentiable, and, therefore, the conven-
tional central difference formula with second order accuracy is
employed to evaluate the derivatives in the transverse direction.

Note that the term n9?>n =1 /022 can be evaluated analytically
owing to the use of the sigmoid function. Preliminary eigen-
mode analysis, however, shows that the use of the analytical
expression often results in the generation of a spurious mode
depending on the choice of Az and a. As a is increased, an
extremely small Az is required to avoid the generation of the
spurious mode, although the accuracy is generally better than
that evaluated numerically. In this letter, we, therefore, adopt
the numerical evaluation, which yields the results with reason-
able accuracy, as will be seen in Section III.

III. DISCUSSION

A spurious loss or amplification of the propagating field of
the TM wave becomes noticeable when the refractive index pro-
file is asymmetrical with high index contrast [1]. We, therefore,
deal with an asymmetrical step-index waveguide. The refrac-
tive indexes are n; = 3.512, no = 3.17, and n3 = 1.0, re-
spectively. The core width is taken to be 2d = 0.5 um. Before
doing the propagating beam analysis, we first check the validity
of using the sigmoid function in the eigenmode analysis. We cal-
culate the fundamental mode at a wavelength of A = 1.55 ym
using the imaginary distance procedure. The sampling widths
are taken to be Az = 0.005 gm and Az = 0.02 pm. Cal-
culation shows that the propagation constant of the waveguide
whose refractive index profile is approximated by the sigmoid
function is = 13.44079, while the exact propagation constant
of the step-index waveguide, which is obtained analytically, is
[ = 13.44297. That is, the difference between the propagation
constants is less than 0.017%, which may be negligible in most
waveguiding problems.

We now carry out the propagating beam analysis. The
asymmetrical step-index waveguide is tilted by # = 5°, as
shown in Fig. 2. The fundamental mode at a wavelength of
A = 1.55 p m is launched. The sampling widths are taken to
be the same as those used in the eigenmode analysis, except
for Az = 0.005/ cos 6 um. The reference index is chosen to be
ng = [cosf/ky, where (3 is the propagation constant of the
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Fig. 2. Configuration of a tilted, asymmetrical waveguide.
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Fig. 3. Normalized guided-mode power of the TM wave as a function of prop-
agation distance. (a) Forward. (b) Backward.

waveguide. A transparent boundary condition (TBC) [8] is im-
posed at the edge of the computational region. The simulation
is done for both forward and backward propagation directions.

Fig. 3 shows the normalized guided-mode power as a func-
tion of propagation distance. If the numerical calculations are
accurate, we do not expect any power loss (or amplification) as
the eigenmode propagates, so that the normalized guided-mode
power retains unity.
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Fig.4. Normalized power of the TM wave as a function of propagation distance
in a Y-branching waveguide.

Fig. 3(a) shows the forward propagation case, and Fig. 3(b)
the backward case. The solid line represents the data obtained
from (2) with the sigmoid function (a = 500). For reference, the
data obtained from (1) with the sigmoid function (¢ = 500) and
that from (2) with a step-index profile (¢ = o) are also shown
by the broken and dotted lines, respectively. It is found that the
power obtained from (2) with the sigmoid function (¢ = 500) is
well conserved. In contrast, the use of (1) exhibits a spurious loss
or amplification, particularly for the backward propagation case.
Fig. 3 also shows that the use of (2) with a step-index profile
does not work well in terms of power conservation. As a result,
the use of (2) together with the sigmoid function is significantly
effective.

It should be noted that the above-mentioned analysis is per-
formed using the exact propagation constant as the reference
index. We also check the dependence of the power on the ref-
erence index. Calculation shows that the power variation is less
than 1% over a reference index variation of £30%. This prop-
erty is almost the same as that observed in the TE mode analysis.

As an application, we simulate a 40-um-long Y-branching
waveguide, the centers of which describe the two curves z =
+[1—cos(wz/40)] in the lateral direction. We intentionally treat
a strongly guiding waveguide, so that the refractive indexes of
the core and the cladding are chosen to be n., = 3.512 and
n. = 1.0, respectively. The core width of the input (output)
waveguide is taken to be 2d = 0.3 pm. A wavelength of A =
1.55 pm is used and the fundamental mode is excited from the
input port. The reference index is fixed to be the effective index
of the input waveguide.

Fig. 4 shows the normalized power as a function of propa-
gation distance. We can again find that the use of (2) together

with the sigmoid function leads to stable results. Note that the
slight loss observed with the present scheme [(2) with a = 500]
is due to the radiation towards the absorbing boundaries. When
the TBC is removed, we can confirm that the power is well con-
served, as clearly indicated in Fig. 4.

We finally comment on the extension of the present technique
to a wide-angle BPM. For example, the formulation of the (1,1)
Padé-operator-based BPM seems to be straightforward. Our cal-
culation, however, shows that the power conservation property
is degraded when the Padé operator is used, although the numer-
ical stability is maintained. This degradation is larger than that
observed in the TE case [9]. The extension to the wide-angle
BPM must be the subject of future research.

IV. CONCLUSION

We have simulated the TM wave propagation along an asym-
metrical step-index waveguide with high index contrast, which
is expressed using a sigmoid function. The propagating field
is satisfactorily analyzed with the power being well conserved.
No computational instability is observed during either the for-
ward or the backward propagation process. The present method
is also effective for analyzing a Y-branching waveguide with
high index contrast. The application of the sigmoid function to
a three-dimensional problem is yet to be researched.
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